A Novel Analytical Model for Flexure-Based Compliant Proportion Mechanisms

نویسندگان

  • Qiaoling Meng
  • Yangmin Li
چکیده

This paper proposes a novel analytical model for flexure-based proportion compliant mechanisms. The displacement and stiffness calculations of such flexure-based compliant mechanisms are formulated based on the principle of virtual work and pseudo rigid body model(PRBM). According to the theory and method, a set of closed-form equations are deduced in this paper, which incorporate the stiffness characteristics of each flexure hinge, together with the other geometric and material properties of the compliant mechanism. Displacement proportion, input stiffness, and output stiffness calculations can simply be performed for any serial compliant mechanism. Corner-filleted and circular flexure hinges that are utilized as connectors in proportion compliant mechanisms in this paper. Two types of flexure-based compliant proportion mechanisms based on the novel analytical model are designed and optimized based on these proposed equations. Finite element analysis results show that these design equations are reliable and easier to be used in the design of such proportion compliant mechanisms. This proposed novel analytical model gives a new viewpoint on the design of flexure-based proportion compliant mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Design Methodology of Flexure-Based Compliant Mechanisms by Utilizing Pseudo-Rigid-Body Models with 3-DOF Joints

This paper focuses on the complex design process of planar compliant mechanisms with flexure hinges. In the following a systematic methodology of the transition from lever mechanisms generated intuitively by the developer or non-intuitively by topology optimization to applicable compliant mechanism is presented. An extended pseudo-rigid-body model (PRBM) is used for the analysis and the modific...

متن کامل

A simple and efficient dynamic modelling method for compliant micropositioning mechanisms using flexure hinges

In this paper we consider the dynamic modelling of compliant micropositioning mechanisms using flexure hinges. A simple modelling method is presented that is particularly useful for modelling parallel micropositioning mechanisms. This method is based upon linearisation of the geometric constraint equations of the compliant mechanism. This results in a linear kinematic model, a constant Jacobian...

متن کامل

Decoupling Optimization of Flexure Hinge and Lever Magnifying Mechanism for an Xy Compliant Micromanipulator

The micro/nano motion stage with ultra-high precision are urgently required to perform such tasks as operation under scanning probe, bio-cell manipulation, optical fibers alighment, etc. The compliant XY micro manipulator employing flexure hinges is widely applying due to their excellent characteristics of simple structure, no backlash, no nonlinear friction, and so on [1]. Some novel compliant...

متن کامل

A Generic Compliance Modeling Method for Two-Axis Elliptical-Arc-Filleted Flexure Hinges

As a kind of important flexible joint, two-axis flexure hinges can realize in-plane and out-of-plane motions and can be used for constructing flexure-based spatial compliant mechanisms. The paper introduces a common two-axis elliptical-arc-filleted flexure hinge that is generated by two different elliptical-arc-filleted cutout profiles and that provides some new hinge types. The analytical comp...

متن کامل

Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator

This paper deals with the mechatronic design of a novel self-sensing motor-to-joint transmission to be used for the actuation of robotic dexterous manipulators. Backdrivability, mechanical simplicity and efficient flexure joint structures are key concepts that have guided the mechanical design rationale to provide the actuator with force sensing capabilities. Indeed, a self-sensing characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013